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TECHNICAL NOTE NO. 1740

AN APPROXIMATE DETERMINATION OF THE LIFT OF SIENDER
+ CYLINDRICAL BODIES AND WING-BODY COMBINATIONS
AT VERY HIGH SUPERSONIC SPEEDS

By H. Reese Ivey and Robert R. Morrissette
SUMMARY

A theory for very high supersonic flow is applied to determine a
first approximation to the pressure distribution, 1ift, and drag due
to 1ift for a slender cylindrical body of revolution and a wing-body
combination. The method is &pplicable only if the altitude of flight
is low enough for the gas dynamics type of flow to exlst, if the.angle
of attack is large, and if the Mach number is extremsly large. The
‘theory used was derived on the basls of a ratio of specific heats equal
to wmity. :

The method indicates that the flow effectively separates from the
body before reaching the widest part of the cross section. The boundary
of this region is determined. Certain load concentrations are found
near the wing-body Junctlon of the configuration investigated.

INTRODUCTION

Long-range rocket-propelled missiles sometimes reach very high
angles of attack at high supersonlic speeds as they re-enter the dense
lower atmosphere. These high angles of attack may be reached accidentally
because of the lack of control at higher altitudes or because of the
1ift required to level out the flight path and to zoom the rocket upward
again.

The most efficlent shape for obtaining 1ift at very high supersonic
speeds is a body with a flat lower surface as pointed out in reference 1.
The pressure distribution for such a body is the same as that of a flat
Plate and can be calculated by the method of reference 2. A slight
extension of this method is necessary, however, before the 1ift of the
more common type of missile (one with clrcular cross section) can be
determined.
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A method 1is presented in reference 2 for approximately predicting
the drag of three-dimensional shapes and the 1ift and drag of two-
dimensional shapes at very hlgh supersonlc speeds. An extension of the
previous work to Include the 1ift eand drag of slender cylindrical
bodies at high angles of attack is given herein. More specifically,
the present paper is confined to a consideration of the forces on that
part of a cilrcular cylinder which is not influenced by the nose of
the body and to a discussion of the spanwise load distribution of a wing-
body combinatlon at high angles of attack. Determination of the
pressures on the nose and the effect of nose pressures on body pressures
are left for future research. .

SYMBOIS
) drag coefficient due to 1ift based on plan area of cylinder
C1, 11t coefficient based on plan area of cylinder
Cry normal-force coefficient based on plan area of cylinder

C1,Cp, and 03 constants in equation for the shape of the shock wave

D drag

d diameter

L 1ifE ‘

1 length of section of body under consideration

M momentum

P pressure coefficient; any polnt

r radius

v free-stream velocity

X,y coordinate axes

a ' angle of attack

B angle between surface, or shock wave, and free-stream |
direction

7 ratio of specific heats
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p free-stream denslty

Subscripts:

1 point where high-density reglon separates from body
2 poin't where high-denslity reglon hits wing

h horizontal

i end point of integration

N normal

n based on normal velocity camponent

v vertical .

METHOD OF ARALYSIS

Figure 1 1s & schematic representation of a missile, with the A

hatched area belng that sultable for investigation by the present method.

" Mach lines .

Figure 1.- Missile with region of application of

present method (hatched area).
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A method for determining the pressures over several aerodynamic shapes
at very high supersonlic speeds in the gas-dynamics flow regime is given
in reference 2. The meothod is based on the fact that the pressure
coefficient at any polnt on a body approaches a limiting value as the
Mach number 1s Increased. As the speed Iincreases, the shock wave wraps
more tightly about the body, and the region of disturbed flow around the
body becomes relatively small. Reference 2 showed that the flow pattern
and, hence, velpoclitles, centrifugal forces, and surface pressures are
not affected greatly by the value chosen for the ratio of specific
heats 7. Since the selection of 7 = 1.0 simplifies the problem
conslderably without modifying the results very much, this value of

7 18 used in the present analysis.

Figure 1 clearly shows the similarity between a cylinder at high
angle of attack and a wing swept back outslde the Mach cone. As on a
sweoptback wing, the pressures on the cylinder are determined only by
the component of the free-stream velocity normal to the axls of the
cylinder. The combination of free-stream Mach number and angle of attack
must be such that the component Vi 1s much greater than the local

speed of sound in order for the calculations to be valid. For a given
forward Mach number, therefore, the equations are more accurate at high
angles of attack. The problem has thus been reduced to the investigatim
of the pressures over a oircular cylinder normal to the streem of air
moving et V. )

A schematic representation of the genergl flow pattern based on
the results of reference 2 is given in figure 2. The thickness of the
high-pressure region has been exaggerated for clarity. Also, the flow
is shown to separate from the surface at some point which is to be
calculated subsequently in this section.
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Shock wave

e
Veloclty component

Very-low-pressure region

Figure 2.- Schematic flow pattern.

 In figure 3.are shown the angle and points that are used in the
calculations.

(:.xi:Yi)

V

Flgure 3.- Geomstry of the analysis
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The pressure coefficient P at any point (x1,y1) is given in reference 2
as

as Ji
P1=25m231+2sinﬁid—§£ cos B dy (1)

’ 1
For the circular cylinder, %= cos B and -%;;: " T e B’ Then, the

pressure coefficient for the circular cylinder at any point is

J
Pi=2(l-coszﬁi) -%—Z—-——-iizgi\];icosﬂdy
2 2 '
J
_of1 -2 3
2 |
2
PR (2)
e

A sketch of the pressure distribution over the cylinder is glven
as figure 4; a more detalled plot of the pressure distribution is glven

in figure 5.

Upstream side Downstream slde

\\le\SV_A/

Figure L.- Pressure distribution over the cylinder.
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The limiting negative pressure coefficient at very high supersonic speeds
is quite close to zero, and for all practical purposes negative pressure
coefficients can be assumed to be unattainable at these speeds. The
centrifugal force due to the curvature of the flow is equal to the
difference in pressure between the shock wave and the surface of the -
cylinder. When the calculated surface pressure coefficient reaches zero,
the shock wave must diverge from the body inasmuch as the pressure drop
across the disturbed air layer is no longer sufficient to produce the
Plow curvature required for following the surface. The separation point
(x1,y1) where the shock wave can no longer follow the surface curvature

is found by setting the pressure coefficient equal to zero; that 1is,

2
33’1
P; =2 ~ —= =0
i re
therefore,
a1 \E _ 0.8165 (3)
r

Since for a body with a glven dlameter the 1ift and drag increase
directly with the length of the body, the force coefficlents are based
on the plan area of the cylinder - that 1s, the product of length and
diameter. The normal-force coefficient based on the dynamic pressure
corresponding to the normal veloclty component Vi 1is

/5 -

21 Py dy
0
CNn - 1d
F r
[ e
a 2
= 1.089 ()

Based on free-stream dynamic pressure, the normal-force coefficient 1s

)" o
C-N = CNn —_F = 1-089 s8in“a (5)
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Then, the lift coefficient is

‘CL = 1.089 sinzq cos a (6)
and the drag coefficlent due to 1ift is

Cp = 1.089 sinda (7)

The lift-drag ratio, therefore, 1s

= cot a | (8)

Yt

Equations (6), (7), and (8) are plotted in figures 6, 7, and 8, respectively.
Maximm 1ift is obtained at an angle of attack of about 55° (fig. 6);

the corresponding drag is very high (fig. 7). Because of the neglect

of viscous drag, very high.1lift-drag ratios are indicated for low angles

of attack (fig. 8). The method should not, however, be applied at low

angles.

The shape of the shock wave that wraps about the cylindrical body
can be estimated from momentum considerations. The "zero-pressure stream-
line method" of reference 2 assumes that the very-high-density region
behind the shock wave is very narrow and is bounded on ome slde by
shock pressure and on the other side by negligible pressure. Since the
shock wave 18 one of the boundaries of the, very-narrow, high-density reglon,
the directlon of the shock wave at any point 1s the same as the directim
of the total momehtum in the high-density region at that same point;
therefore, the slope of the shock wave at any point (xi,yi) is

(&), (%), oo

The vertical momentum at the point (xl,yl) where the flow effectively
separates from the body is given by the following equation:

J
le = pVNQSin Blf 1 cos B dy
0
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The horizontal momentum at this same point is given as

71
My, = vaQcos B1 cos B dy

If no further loss in momentum is assumed to take place after the
high-density flow separates from the body, the vertical momentum remains
constant and equal to the value at the point (x1,y7). The horizontal

momentum, however, at some point (xi,yi) beyond the point of separatiom
1s the sum of the horizontel momentum at the point (x3,y;) and the

horizontal momentum added from the free stream between the points
(x1,31) emd (xp,5y). Thus, \

. Ji
My, + PV dy
1

My

2 Tl
PV~{cos By cos B dy - y1 + ¥1
0

Substituting the foregoing relations for Mvi and Mhi in
equation (9) and letting

J1 -
C1 = 2|cos B3 cos B dy - y1
0

and

. i -
Co = -2 sin By cos B dy
0
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&y __ 0o
dx;, Gy + 2y

Integrating ylelds the following relation:

y12 + Clyi + 021'_1 = C3

NACA TN No. 1740

(10)

The constant C3 may be obtained by evaluating the left side of the

equation at the point

(x1,71)+ . The equation of the shock wave-is, thus,

parabolic, and the constants lnvolved vary with the shape of the body.

For the case considered herein (cylinder with r

1.0) the

constants mhy be evaluated fram the following relations (see fig. 3):

sinp=1-x

cos B =3

Since y; was found to. be 0.8165 (equation (3)), then

x; =T - \|r® - y17 = 0.4231

Evaluating the constants and substituting them in equation (10)
yield the following equation for the shock wave after it leaves the

cylinder:

¥4° - 1.089y; - 0.385x%; + 0.385 =0

Equation (11) is plotted in figure 9.

(11)
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SPANWISE ILOAD DISTRTBUTION

The method used herein for obtaining the spanwise load distribution
is limited to wing sections with flat lower surfaces. The spanwise load
distribution can then be calculated in three parts.

Load distributlon over cylindrical body.- The load distribubion over
the cylindrical body can be obtained from equatiom (2) or from figure 5.

Load distribution along wing outboard from point where high-density
air hits wing.- Since a complete loss in momentum (in the direction normel
to the body axis) occurs on the lower surfaces of the wings Just as on
the leading edge of the cylindrical body, the pressure coefficient is,
therefore, the same at both places. This pressure coefficient is the
peak pressure coefficient of the cylindrical body, and the value is 2.0.

Concentrated logd in high-density flow that separates from cylinder.-
The pressure near the wing-body intersection follows from elementary
considerations. Since the normal-force coefficlent (1.089)-of the body
based on the dynamic pressure for the velocity normal to the axis of the
body is less than that due to a complete loss in momentum (2.0),
appreclable momentum remains in the air stream. This momentum is
concentrated into a very narrow spanwise distance (zero for the case of
7 = 1.0 because the density goes to infinity) and, finally, is completely
lost at the wing surface (near the wing root). The momentum of the flow
normal to the axlis of the body is all lost (part at the body and part
near the wing-body Juncture); therefore, the total 1lift for a umit
length of wing and body is the same as that for a continuous wing.
Inasmich as the 11ft coefficient over the body is about one-half that
over a wing, the 1ift coefflclent at the wing root must then be higher
than that of a wing alone; thus, very high peak pressures exist near
the wing root. The theory indicates that for the limiting case of
extremely high Mach numbers the pressure coefficient is infinity for
an infinitesimal distance along the span (point P, in fig. 10). Point Po
can be found from the equation of the shock wave %equation (11)). For
finite Mach numbers the peak pressures are expected to be finite and
the pressure distribution is expected to have less abrupt changes.

The part of the body ahead of or behind the section influsncing the
wing develops 1ift in the manner shown in figures 5 and 6.

CONCIUDING REMARKS

An approximate theory for very high supersonic speeds is applied
to determine the 1ift and drag due to 1ift for a cylindrical body and a
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wing-body combination at high sngles of attack in a gas dynamics type

of flow. For a body with a given diameter the 1ift is dlrectly proportionsl
to the body length. The 1ift of the circular body is approximaetely one-
half that of a wing of the same plan area. The wing roots have extremely
high pressures because they convert the flow around the local body

sections into additional 1ift. The wing and the corresponding part of

the body develop & cambined 1ift equal to that of a continuous wing.

Langley Aeronautical Isboratory
National Advisory Committee for Aesronautics
Langley Field, Va., August 3, 1948
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